
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 1|P a g e

Computations Of Elementary Functions Based On Table Lookup

And Interpolation

Syed Aliasgar
1
, Dr.V.Thrimurthulu

2
, G Dillirani

3

1
Assistant Professor, Dept.of ECE, CREC, Tirupathi, A.P, India
2
Professor, Head of ECE Dept., CREC, Tirupathi, A.P, India

3
Assistant Professor, Dept.of ECE, CREC, Tirupathi, A.P, India

1
aliasgarsyed@gmail.com,

2
vtmurthy.v@gmail.com, gdillirani@gmail.com

Abstract
In this paper, we are focussing on the realization of functions such as log () and antilog () in hardware due to

their importance in several computing applications.

In this paper, we are trying to show low memory requirement as compared with other methods to provide better

accuracies. The idea of this project was to use LUTs along with linear or quadratic interpolation and

approximates the multiplication required for interpolation using approximate log () and antilog () functions

while computing a more accurate log () and antilog (). This method scaled very well with an increase in the

required accuracy, compared to existing techniques. The proposed algorithm is implemented and tested using

verilog hardware description language.

Keywords: Lookup Table,Interpolation, FPGA.

I. INTRODUCTION
The generation of elementary functions such as

log() and antilog() finds uses in many areas such as

Digital Signal Processing, 3D computer graphics,

scientific computing, artificial neural networks,

logarithmic number systems andother multimedia

applications. In fact the fast generation of these

functions is critical to performance in many of these

applications. Using software algorithms to generate

theseelementary functions is often not fast enough

[1], [2]. Hence the use of dedicated hardware to

compute log() and antilog() is of great value. Over

the past few decades, many authors have proposed

various hardware approaches to approximate these

elementary functions in an area-efficient manner,

while maintaining high speed and accuracy. Two

methods which are well researched and used for the

generation of the logarithm function are digit-

recurrence algorithms and look up table based

approaches. Out of these methods the digit-

recurrence methods are efficient from an area and

accuracy perspective, but have longer latencies and

convergence problems [3]. The look up table based

methods are widely used to approximate logarithm

and antilogarithm functions. Some of the previous

works involving look up table based methods

include, table lookups combined with polynomial

approximations [2], [4], symmetric bipartite table

based approximations [5], [6] etc. The main objective

of all these works is to utilize minimum circuit area

while retaining the accuracy of the approximation.

Our approach combines a table lookup with a linear

interpolation, implemented in a manner that

optimizes the area while providing good accuracy.

We apply our method to generate the logarithm of a

number and also show that a similar methodology

can be used to generate the antilogarithm of a

number. In this work, the number format used is

similar to the IEEE 754 single-precision floating

point format which has 32 bits. The leading bit is the

sign bit, followed by an 8-bit exponent E and a 23 bit

mantissa M. The value of a number represented in

this format is given by

_1:M _ 2E�127: (1)

We use a similar number format representation,

but assume the number of bits k in the mantissa to be

variable. We target 13 or more bits of accuracy in this

work.

The remainder of this paper is organized as

follows: Some previous work in this area is described

in Section II.Section III elucidates our approach to

efficiently find the logarithm of a number, and also

provides an error analysis of the approximation. In

Section V we present some estimates on the area of

the architecture, and compare it with other relevant

works. We conclude in Section VI.

II. OUR APPROACH
This work uses a look up table based approach

combined with a linear interpolation to generate the

logarithm of a number. The multiplication required in

this linear interpolation is avoided, resulting in an

area reduction. The idea is describedn the following

sections.

RESEARCH ARTICLE OPEN ACCESS

mailto:aliasgarsyed@gmail.com
mailto:2vtmurthy.v@gmail.com

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 2|P a g e

A. Interpolation Approach

Mitchell’s approximation [7] is given by the

equation.

log(1 +m) = m (2)

The error due to this approximation is given by

EM = log(1 +m) �m (3)

The error curve shown in Figure 1 is sampled at

2t points (depending on the size of the table required)

and the sampled values are stored in the look up

table. The look up table is addressed by the first t bits

of the mantissa portion ofthe number. Now we

investigate the option of interpolatingbetween the

values stored in the table. This is done by the

following equation.

log(1 +m) = m+ a +(b � a) _ n12k�t (4)

Fig. 1. Error due to Mitchell Approximation

Here m is the mantissa part, a is the error value

from thetable accessed by the first t bits and b is the

next table value adjacent to a. k is the total number of

bits used to represent the mantissa and n1 is the

decimal value of the last k � t bits of the mantissa.

Essentially we find an error value from the table

based on the first t bits and interpolate between this

value and the next value based on the remaining bits.

The third term in Equation 4 requires a

multiplication. In order to circumvent the

multiplication (which is expensive in terms of area

and delay) we investigate the option of interpolating

repeatedly between any two adjacent values stored in

the table. This is done using Algorithm 1.

Algorithm 1 Recursive Bipartitioning

STEP 1: The first t bits address the table to obtain the

stored left value a and the adjacent right value b

STEP 2: Bisect the two values obtained in the

previous step and find the middle value

if the next bit in the mantissa is a 1 then

Keep the middle and right values

else

Keep the left and middle values

end if

if the last bit of the mantissa is not reached then

Goto STEP 2

else

Choose the left or right value based on, if the last bit

is a 0 or 1 respectively

end if

The error performance of Algorithm 1 is shown

in Figure 2 This gives us 14 accurate bits. The only

problem with this approach is that there are too many

steps involved as all the mantissa bits are considered.

Trying another approach, we investigate the case

where a limited number of interpolations are done.

We tabulate the maximum error incurred when the

above algorithm is implemented for t, t + 1 and so on

upto t + 8 mantissa bits and ignoring the rest. This is

the same as doing different levels of interpolation

from 0 to 8. The maximum error for this approach is

shown in Table I. The depth of the look up table used

is 64 words and the size of each word is 16 bits. From

Table I we see that 1 or 2 interpolations are not

enough to give a good error performance. Reasonable

accuracy is obtained for either 7 or 8 bits, but this

requires as many interpolations, and therefore results

in larger delays in computing the logarithm. In order

to obtain better accuracy, we need to implement the

multiplication of (b � a) and n1. However,

implementing multiplication is expensive in terms of

area and delay. Therefore, we approximate the

multiplication, so as to obtain good error

performance as well as low delay and area utilization.

We will show in the following sections(s) that our

approach gives similar error performance as the 7 bit

interpolation, with smaller area and lower delay.

TABLE I

MAXIMUM ERROR FOR A LIMITED

INTERPOLATION APPROACH

Fig. 2. Error Performance of Algorithm 1

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 3|P a g e

B. More Effective Approach

In this section, we propose a more efficient

approach to do interpolation without the

multiplication of (b�a) and n1 in Equation 4. The

essential idea is that the multiplication of (b � a) and

n1 is simplified by taking the antilogarithm of the

sum of the logarithm of (b � a) and the logarithm of

n1. In order to perform this operation with a small

delay, we consider the following options:

1) log2(b � a) may be approximated by

a) Mitchell approximation

b) Table look up : For the table look up option the

constants log2(b � a) for each of the intervals is

stored in the original look up table. Recall that we

stored the error values obtained by using a Mitchel

approximation for the log function. The log2(b�a)

values are stored along with the error values and are

indexed by the same address lines.

2) Antilog of (log2(n1) + log2(b � a)) may be

approximated by

a) Mitchell approximation

b) Table look up : To obtain the antilogarithm of a

number by this method, we need to construct another

similar look up table. The error due to the Mitchell

approximation of the antilogarithm function is stored

in a lookup table as shown inSection IV. This antilog

lookup table is utilized to compute the logarithm of a

number, since the multiplication of (b � a) and n1 is

performed by taking the antilogarithm of the sum of

the logarithm of (b � a) and the logarithm of n1 The

maximum error in the logarithm of a number incurred

by using each of these options along with the number

of accurate bits in the result is shown in II.

Number of words in the Table

Metho

d

64 128 256

 Max

Error

Bits Max

Error

Bits Max

Erro

r

Bits

1.a),2.

a)

2.857

9

11.7

7

1.272

0

12.9

4

0.62

28

13.

97

1.a),2.

b)

3.449

0

11.5 1.675

3

12.5

4

0.08

43

13.

53

1.b),2.

a)

3.576

0

11.4

5

1.738

4

12.4

9

0.84

67

13.

52

1.b),2.

b)

0.732

0

13.7

4

0.214

2

15.5

1

0.06

87

17.

15

TABLE II

MAXIMUM ERROR x 10�3 FOR VARIOUS

APPROACHES

From Table II we see that the combination of

1:b) and 2:b) has the best error performance.

Therefore, to perform the interpolation described in

Equation 4, it makes sense to find the antilogarithm

using a lookup table. The additional advantage of this

is that the same lookup table can be used while

computing the antilogarithm of a number as well.

Table II also shows that our approach allows

scalability of the system, by making a trade-off

between the accuracy and the number of values

stored in the table.

C. Architecture of Implementation

The Figures 3 and 4 show the architecture of the

implementation of our scheme. The implementation

is pipelined, with 7 stages in the pipeline. We use a

23-bit mantissa and a 26 by 16 bit lookup table as an

example. The width of each word in the table is

chosen as 16 bits so that the error due to truncation

does not dominate the overall error. Recall that the

overall error, from Table II, was 13.74 bits in this

case. Since the exponent part of the input number

trivially becomes the decimal part of the logarithm,

we only show the operations on the mantissa. One of

the adders is a three input fixed point adder as shown

in Figure 4. The output of the antilog lookup is

shifted by a value equal to the the decimal value of

the output of this 3-input adder. This operation is not

shown in Figure 4. The width of the mantissa bits

processed by each block in the architecture is shown

in the diagrams. Since (b � a) takes both negative

and positive values for 0 < m < 1, the log(b � a)

values stored in the lookup tables are actually the

logarithm of the absolute values of(b � a). It is found

that (b � a) changes sign from positive to negative

for m > 0:4427. This is equivalent to comparing the

decimal value of the first six bits of the mantissa with

28, as shown in Figure 4. Hence, if the first six bits

have a value greater than 28, the comparator block

sends a control signal to the ADD/SUB block

instructing it to perform a subtract operation. The

LOD or leading One Detector block detects the first

bit that has a value 1. It then uses the mantissa given

by the remaining bits to access the lookup table. The

decimal part of log n is directly sent to the three input

fixed point adder. Also the 27 term in the

denominator of Equation 4 is trivially accounted for

after the antilog look up stage, by a constant right

shift of 7 bits.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 4|P a g e

Fig. 3. Block Diagram of the Log Engine

Fig. 4. Architecture of the Interpolator

D. Error Analysis

The expression for error due to a Mitchell

approximation of the logarithm is given by Equation

3. The error curve is plotted in Figure 1

As mentioned before, this curve is sampled at

various points, and these samples are stored in the

lookup table. It is observed that while interpolating

between any two adjacent values in the table, the

maximum error is bound to occur when the

difference between the two error values is largest.

The largest error occurs for the first pair of

points in the lookup table. The size of this largest

error (assuming a table of size 6 and width 16) is

given by:

Smax = log2(1+2�6)�2�6�log2(1+0)�0 =

6:7428_10�3 (5)

The expression for error due to our approximation is

given from Equation 4 as

E = log2(1 +m) �m � a �(b � a) _ n1 2k�t (6)

There are three sources of error in our method.

An error upper bound is obtained by adding the

maximum errors due to all these sources. In other

words,

Etot = Etr + Eint + Eanti (7)

where Etr is the error due to truncation of bits stored

in the lookup table, Eint is the error due to

interpolation and Eanti is the error incurred due to the

use of the anti-logarithm function during

interpolation. The input number is split into three

different ranges for the error analysis.

Case 1: Inputs from 0 to 27-1 (i.e. mantissa with 7

bits): Here the error is due to truncation alone as the

error values for all 6-bit numbers have already been

stored in the lookup table. For a table in which each

word is 16 bits wide, the truncation error is given by

2�17.

Case 2: Inputs from 27 to 214-1 (i.e. mantissa with

14 bits): The error has contributions from all the three

error sources mentioned above. Interpolation is done

by using Equation 8. In this case the first value of the

interval is a = 0 and the last value is b = Smax. Also

the first 6 bits of the mantissa rezeros since we are in

the first of 26 intervals, and the value of n1 is given

by the decimal value of the next 7 bits. This can be

expressed as n1 = m _ 213. The interpolation error

term is given by

Interpolation term = a + (b � a) _ n1 27 (8)

Substituting b, a and n1 in 8 we get the

interpolation term in the first interval as Interpolation

term = Smax(m_ 213)=27:

(9)

If the error due to anti-log is assumed to be zero, we

can find that the error expression due to interpolation

by using the following equation.

Eint = log2(1 +m) �m � Smax _ (m _ 26): (10)

The maximum error is found by differentiating

this equation, and setting it to zero. We get the

maximum error as

 Emaxint =4:33 _ 10�5 at m = 7:7929_ 10�3.

The anti-log error depends on the values of

log2(b � a) which is stored in the table and log2(n1) .

We find the error due to antilog by simulating the

lookup table based antilog approximation for these

particular values and find the maximum anti-log error

to be 8:4433_ 10�6.

The results of the simulation are shown in Figure

5 for all possible values of m ranging from 0 to 1.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 5|P a g e

Fig. 5. Anti-log Error during Interpolation

Fig. 6. Interpolation Error for case 3

Case 3: For numbers from 214 to 2k-1 (i.e. mantissa

with higher than 14 bits precision): The truncation

and antilog errors are the same as above. As for the

interpolation error, we proceed in a fashion similar to

Case 2. Here the value of n1 is given by n1 =

round(m_213),where the round() function represents

a round-off to the closest integer. The error function

for this case is given by:

Eint = log2(1 +m) �m�Smax _ round(m _ 213)27

Plotting this expression from m = 0 to 2�6 in Figure

6, we find the maximum error as 6:9276_10�5. Out

of all the above cases the third case has the worst

error due to interpolation, while the errors due to

truncation and antilog approximation remain the

same. Hence the error bound, given by plugging in

the maximum values of each of the error components

in 7 is

Etot =8:5348 _ 10�5:

III. ANTILOGARITHM COMPUTATION
The Mitchell approximation to find the binary

antilogarithm of a number is given by the expression:

2m = 1 +m (12)

The error due to this expression is given by

EM = 2m � (1 +m) (13)

We sample the error curve at as many points as

required, and store these values in the first entry of a

lookup table. If c; d are any two adjacent values

stored in the memory, we store log2(c � d) in the

second entry of the lookup table. The architecture

used for the implementation of the antilog function is

very similar to the logarithm implementation except

for these differences. In Figure 3, instead of the adder

block we use a subtractor as the Mitchell

approximation is always higher than the actual

antilog value. Also the polarity of c�d changes from

positive to negative when the mantissa m > 0:5288.

Hence while using a table with 6 address bits (i.e. 64

values), the comparison done in Figure 4 will be to

check if the decimal value of the first six bits of the

mantissa is greater than 34. The antilogarithm

computation was simulated, and the worst case errors

and the accurate number of bits are shown in Table

III for different table sizes.

TABLE III

WORST CASE ANTILOG ERROR

IV. EXPERIMENTAL RESULTS AND

COMPARISONS
In this section, we make comparisons with

existing approaches that approximate the logarithm

function. In comparison to the 6-region error

correction algorithm described in [8], our approach is

more flexible in that it supports better accuracies by

increasing the LUT size and adding more bits to

the adders/subtractors involved. The 6-region error

correcting method has an absolute maximum error of

0.0132 which givesan accuracy of 6 bits. We also

analyze the LUT based approximation methods.

Table IV compares the accuracy of methods given by

Brubaker [11], Maenner [12], and Kmetz [13] for a

fixed table size of 2048 bits. We note that if these

methods were to provide an accuracy comparable to

ours, they need much bigger table sizes. The other

methods shown in Table IV implement only the log

function. Since our method implements both the log

and the antilog function, we report only half the total

lookup table size needed for our approach. In Table

V, we compare the lookup table size required by our

method and the symmetric bipartite table method [6].

The symmetric bipartite table method involves two

parallel table lookups and an addition. From Table V,

we note that our approach requires far less memory

than the SBTM approach. Also when the required

accuracy increases in bits, we see that the LUT size

for the SBTM method needed to support this

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 6|P a g e

accuracy increases at a much faster rate than for our

method. For a 2 bit increase in the accuracy, the

SBTM LUT size increases almost by a factor of a

power of 3 whereas the LUT size of our method

increases by a factor of a power of 2. The extra

accuracy we obtain in our method is traded-off with

the need to implement a modest number of additional

components for interpolation. We quantified this

overhead by implementing our method (as well as the

SBTM method [6]) using the Xilinx ISE Foundation

tool [15]. We used the XUPV2P board for this

experiment. Table VI reports the outcome of this

experiment, for outputs accurate upto 13 bits and 15

bits. Although our method has a bigger logic

overhead in terms of flip-flops, 4 - input LUTs and

slices, these numbers are insignificant when

compared to available logic resources on a

conventional FPGA. For example in the XCV2P30

FPGA with 30000 slices, both methods utilize less

than 1% of the FPGA resources. Also our method is

far more conservative with respect to the memory

resources utilized. Note that our method scales

extremely well to obtain higher accuracies. To scale

from 13 bits of accuracy to 15 bits we need a minimal

increase in the logic resources and twice the memory

resources as for 13 bits. The SBTM also needs a very

small increase in the logic utilization, but needs close

to three times more memory than for 13 bits. This

trend in resource utilization holds as we scale to

higher accuracies. The SBTM thus presents a

bottleneck in its memory requirement for higher

accuracies. Note that for 13 bits of accuracy we need

two tables with 2048 bits each to generate the log and

the antilog function. Also while computing the log

function, half of the antilog look up table is required

and vice versa during the antilog computation. The

XUPV2P board used for the experiments supports

dual port block RAM memory and so both log and

antilog functions can be implemented

simultaneously, without creating conflicts during

memory access.

TABLE IV

COMPARISON OF ACCURACY

TABLE V

COMPARISON OF TABLE SIZES

TABLE VI

FPGA RESOURCE UTILIZATION

V. CONCLUSION
In this paper, The simulated results and the

computed results always have at least 10 bits of

accuracy which is the target of the implementation.In

this project, presented approach is to compute log ()

and antilog () in hardware. This approach is based on

a LUT, followed by an interpolation step.We find log

() and antilog () of a number efficiently using

interpolation, without the need to explicitly perform

multiplication or division.Performed the

multiplication which is required during the

interpolation step, by utilizing an antilogarithm

operation. The antilogarithm operation is also

performed by utilizing a LUT. This approach results

in significantly lower memory utilization for the

same accuracy. This method scales extremely well to

accommodate higher accuracies.

REFERENCES
[1] J.-A. Pineiro, “Algorithm and architecture

for logarithm,exponential,and powering

computation,” IEEE Trans. Computers vol.

53, no. 9, pp. 1085–1096, Sep. 2004.

[2] D. M. Mandelbaum and S. G. Mandelbaum,

“A fast, efficient parallelacting method of

generating functions defined by power

series,including logarithm, exponential, and

sine, cosine,” IEEE Trans. ParallelDistrib.

Syst., vol. 7, no. 1, pp. 33–45, Jan. 1996.

[3] M. J. Schulte and J. E. E. Swartzlander,

“Hardware designs for exactly rounded

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

National Level Technical Symposium On Emerging Trends in Engineering & Sciences

(NLTSETE&S- 13
th
 & 14

th
 March 2015)

 Chadalawada Ramanamma Engineering College 7|P a g e

elementary functions,” IEEE Trans.

Computers, vol. 43, no. 8,pp. 964–973, Aug.

1994.

[4] J. A. Pineiro, M. D. Ercegovac, and J. D.

Bruguera, “High-radix logarithm with

selection by rounding: Algorithm and

implementation,” J.VLSI Signal Process.

Syst. vol. 40, pp. 109–123, May 2005.

[5] D.K. Kostopoulos, “An algorithm for the

computation of binary logarithms,”IEEE

Trans. Computers, vol. 40, no. 11, pp. 1267–

1270, Nov.1991.

[6] P. T. P. Tang, “Table-lookup algorithms for

elementary functions and their error

analysis,” in Proc. 10th Symp. Comput.

Arithmetic, Jun. 1991, pp. 232–236.

[7] J. E. Stine and M. J. Schulte, “The

symmetric table addition method for

accurate function approximation,” J. VLSI

Signal Process., vol. 21, pp. 167–177, Jun.

1999.

[8] M. J. Schulte and J. E. Stine,

“Approximating elementary functions with

symmetric bipartite tables,” IEEE Trans.

Computers, vol. 48, no. 8, pp. 842–847,

Aug. 1999.

[9] J. N. Mitchell, “Computer multiplication

and division using binary logarithms,”IRE

Trans. Electron. Computers, vol. 11, pp.

512–517, Aug.1962.

[10] “A Fast Hardware Approach for

Approximate, Efficient Logarithm and

antilogarithm Computations”, ieee

transactions on VLSI systems vol.17

No2,feb2009.

