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Abstract 
In this paper, we are focussing on the realization of functions such as log ( ) and antilog ( ) in hardware due to 

their importance in several computing applications. 

In this paper, we are trying to show low memory requirement as compared with other methods to provide better 

accuracies. The idea of this project was to use LUTs along with linear or quadratic interpolation and 

approximates the multiplication required for interpolation using approximate log ( ) and antilog ( ) functions 

while computing a more accurate log ( ) and antilog ( ). This method scaled very well with an increase in the 

required accuracy, compared to existing techniques. The proposed algorithm is implemented and tested using 

verilog hardware description language. 

Keywords: Lookup Table,Interpolation, FPGA. 

 

I. INTRODUCTION 
The generation of elementary functions such as 

log() and antilog() finds uses in many areas such as 

Digital Signal Processing, 3D computer graphics, 

scientific computing, artificial neural networks, 

logarithmic number systems andother multimedia 

applications. In fact the fast generation of these 

functions is critical to performance in many of these 

applications. Using software algorithms to generate 

theseelementary functions is often not fast enough 

[1], [2]. Hence the use of dedicated hardware to 

compute log() and antilog() is of great value. Over 

the past few decades, many authors have proposed 

various hardware approaches to approximate these 

elementary functions in an area-efficient manner, 

while maintaining high speed and accuracy. Two 

methods which are well researched and used for the 

generation of the logarithm function are digit-

recurrence algorithms and look up table based 

approaches. Out of these methods the digit-

recurrence methods are efficient from an area and 

accuracy perspective, but have longer latencies and 

convergence problems [3]. The look up table based 

methods are widely used to approximate logarithm 

and antilogarithm functions. Some of the previous 

works involving  look up table based methods 

include, table lookups combined with polynomial 

approximations [2], [4], symmetric bipartite table 

based approximations [5], [6] etc. The main objective 

of all these works is to utilize minimum circuit area 

while retaining the accuracy of the approximation. 

Our approach combines a table lookup with a linear 

interpolation, implemented in a manner that 

optimizes the area while providing good accuracy. 

We apply our method to generate the logarithm of a 

number and also show that a similar methodology 

can be used to generate the antilogarithm of a 

number. In this work, the number format used is 

similar to the IEEE 754 single-precision floating 

point format which has 32 bits. The leading bit is the 

sign bit, followed by an 8-bit exponent E and a 23 bit 

mantissa M. The value of a number represented in 

this format is given by  

_1:M _ 2E�127:                                              (1) 

We use a similar number format representation, 

but assume the number of bits k in the mantissa to be 

variable. We target 13 or more bits of accuracy in this 

work. 

The remainder of this paper is organized as 

follows: Some previous work in this area is described 

in Section II.Section III elucidates our approach to 

efficiently find the logarithm of a number, and also 

provides an error analysis of the approximation. In 

Section V we present some estimates on the area of 

the architecture, and compare it with other relevant 

works. We conclude in Section VI. 

 

II. OUR APPROACH 
This work uses a look up table based approach 

combined with a linear interpolation to generate the 

logarithm of a number. The multiplication required in 

this linear interpolation is avoided, resulting in an 

area reduction. The idea is describedn the following 

sections. 
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A. Interpolation Approach 

Mitchell’s approximation [7] is given by the 

equation. 

log(1 +m) = m                                                       (2) 

The error due to this approximation is given by 

EM = log(1 +m) �m                                               (3) 

The error curve shown in Figure 1 is sampled at 

2t points (depending on the size of the table required) 

and the sampled values are stored in the look up 

table. The look up table is addressed by the first t bits 

of the mantissa portion ofthe number. Now we 

investigate the option of interpolatingbetween the 

values stored in the table. This is done by the 

following equation. 

log(1 +m) = m+ a +(b � a) _ n12k�t                      (4) 

 
Fig. 1. Error due to Mitchell Approximation 

 

Here m is the mantissa part, a is the error value 

from thetable accessed by the first t bits and b is the 

next table value adjacent to a. k is the total number of 

bits used to represent the mantissa and n1 is the 

decimal value of the last k � t bits of the mantissa. 

Essentially we find an error value from the table 

based on the first t bits and interpolate between this 

value and the next value based on the remaining bits. 

The third term in Equation 4 requires a 

multiplication. In order to circumvent the 

multiplication (which is expensive in terms of area 

and delay) we investigate the option of interpolating 

repeatedly between any two adjacent values stored in 

the table. This is done using Algorithm 1.             

   

Algorithm 1 Recursive Bipartitioning 

STEP 1: The first t bits address the table to obtain the 

stored left value a and the adjacent right value b 

STEP 2: Bisect the two values obtained in the 

previous step and find the middle value 

if the next bit in the mantissa is a 1 then 

Keep the middle and right values 

else 

Keep the left and middle values 

end if 

if the last bit of the mantissa is not reached then 

Goto STEP 2 

 

else 

Choose the left or right value based on, if the last bit 

is a 0 or 1 respectively 

 

end if 

The error performance of Algorithm 1 is shown 

in Figure 2 This gives us 14 accurate bits. The only 

problem with this approach is that there are too many 

steps involved as all the mantissa bits are considered. 

Trying another approach, we investigate the case 

where a limited number of interpolations are done. 

We tabulate the maximum error incurred when the 

above algorithm is implemented for t, t + 1 and so on 

upto t + 8 mantissa bits and ignoring the rest. This is 

the same as doing different levels of interpolation 

from 0 to 8. The maximum error for this approach is 

shown in Table I. The depth of the look up table used 

is 64 words and the size of each word is 16 bits. From 

Table I we see that 1 or 2 interpolations are not 

enough to give a good error performance. Reasonable 

accuracy is obtained for either 7 or 8 bits, but this 

requires as many interpolations, and therefore results 

in larger delays in computing the logarithm. In order 

to obtain better accuracy, we need to implement the 

multiplication of (b � a) and n1. However, 

implementing multiplication is expensive in terms of 

area and delay. Therefore, we approximate the 

multiplication, so as to obtain good error 

performance as well as low delay and area utilization. 

We will show in the following sections(s) that our 

approach gives similar error performance as the 7 bit 

interpolation, with smaller area and lower delay. 

 
TABLE I 

MAXIMUM ERROR FOR A LIMITED 

INTERPOLATION APPROACH 

 

 
Fig. 2. Error Performance of Algorithm 1 
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B. More Effective Approach 

In this section, we propose a more efficient 

approach to do interpolation without the 

multiplication of (b�a) and n1 in Equation 4. The 

essential idea is that the multiplication of (b � a) and 

n1 is simplified by taking the antilogarithm of the 

sum of the logarithm of (b � a) and the logarithm of 

n1. In order to perform this operation with a small 

delay, we consider the following options: 

1) log2(b � a) may be approximated by 

a) Mitchell approximation 

b) Table look up : For the table look up option the 

constants log2(b � a) for each of the intervals is 

stored in the original look up table. Recall that we 

stored the error values obtained by using a Mitchel 

approximation for the log function. The log2(b�a) 

values are stored along with the error values and are 

indexed by the same address lines. 

2) Antilog of (log2(n1) + log2(b � a)) may be 

approximated by 

a) Mitchell approximation 

b) Table look up : To obtain the antilogarithm of a 

number by this method, we need to construct another 

similar look up table. The error due to the Mitchell 

approximation of the antilogarithm function is stored 

in a lookup table as shown inSection IV. This antilog 

lookup table is utilized to compute the logarithm of a 

number, since the multiplication of (b � a) and n1 is 

performed by taking the antilogarithm of the sum of 

the logarithm of (b � a) and the logarithm of n1 The 

maximum error in the logarithm of a number incurred 

by using each of these options along with the number 

of accurate bits in the result is shown in II. 

Number of words in the Table 

Metho

d 

64 128 256 

 Max 

Error 

Bits  Max 

Error 

Bits  Max 

Erro

r 

Bits  

1.a),2.

a) 

2.857

9 

11.7

7 

1.272

0 

12.9

4 

0.62

28 

13.

97 

1.a),2.

b) 

3.449

0 

11.5 1.675

3 

12.5

4 

0.08

43 

13.

53 

1.b),2.

a) 

3.576

0 

11.4

5 

1.738

4 

12.4

9 

0.84

67 

13.

52 

1.b),2.

b) 

0.732

0 

13.7

4 

0.214

2 

15.5

1 

0.06

87 

17.

15 

 

TABLE II 

MAXIMUM ERROR x 10�3 FOR VARIOUS 

APPROACHES 

 

From Table II we see that the combination of 

1:b) and 2:b) has the best error performance. 

Therefore, to perform the interpolation described in 

Equation 4, it makes sense to find the antilogarithm 

using a lookup table. The additional advantage of this 

is that the same lookup table can be used while 

computing the antilogarithm of a number as well. 

Table II also shows that our approach allows 

scalability of the system, by making a trade-off 

between the accuracy and the number of values 

stored in the table. 

 

C. Architecture of Implementation 

The Figures 3 and 4 show the architecture of the 

implementation of our scheme. The implementation 

is pipelined, with 7 stages in the pipeline. We use a 

23-bit mantissa and a 26 by 16 bit lookup table as an 

example. The width of each word in the table is 

chosen as 16 bits so that the error due to truncation 

does not dominate the overall error. Recall that the 

overall error, from Table II, was 13.74 bits in this 

case. Since the exponent part of the input number 

trivially becomes the decimal part of the logarithm, 

we only show the operations on the mantissa. One of 

the adders is a three input fixed point adder as shown 

in Figure 4. The output of the antilog lookup is 

shifted by a value equal to the the decimal value of 

the output of this 3-input adder. This operation is not 

shown in Figure 4. The width of the mantissa bits 

processed by each block in the architecture is shown 

in the diagrams. Since (b � a) takes both negative 

and positive values for 0 < m < 1, the log(b � a) 

values stored in the lookup tables are actually the 

logarithm of the absolute values of(b � a). It is found 

that (b � a) changes sign from positive to negative 

for m > 0:4427. This is equivalent to comparing the 

decimal value of the first six bits of the mantissa with 

28, as shown in Figure 4. Hence, if the first six bits 

have a value greater than 28, the comparator block 

sends a control signal to the ADD/SUB block 

instructing it to perform a subtract operation. The 

LOD or leading One Detector block detects the first 

bit that has a value 1. It then uses the mantissa given 

by the remaining bits to access the lookup table. The 

decimal part of log n is directly sent to the three input 

fixed point adder. Also the 27 term in the 

denominator of Equation 4 is trivially accounted for 

after the antilog look up stage, by a constant right 

shift of 7 bits. 
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Fig. 3. Block Diagram of the Log Engine 

 

 
Fig. 4. Architecture of the Interpolator 

 

D. Error Analysis 

The expression for error due to a Mitchell 

approximation of the logarithm is given by Equation 

3. The error curve is plotted in Figure 1 

As mentioned before, this curve is sampled at 

various points, and these samples are stored in the 

lookup table. It is observed that while interpolating 

between any two adjacent values in the table, the 

maximum error is bound to occur when the 

difference between the two error values is largest. 

The largest error occurs for the first pair of 

points in the lookup table. The size of this largest 

error (assuming a table of size 6 and width 16) is 

given by: 

Smax = log2(1+2�6)�2�6�log2(1+0)�0 = 

6:7428_10�3                                                           (5) 

The expression for error due to our approximation is 

given from Equation 4 as 

E = log2(1 +m) �m � a �(b � a) _ n1 2k�t          (6) 

There are three sources of error in our method. 

An error upper bound is obtained by adding the 

maximum errors due to all these sources. In other 

words, 

Etot = Etr + Eint + Eanti                                      (7) 

where Etr is the error due to truncation of bits stored 

in the lookup table, Eint is the error due to 

interpolation and Eanti is the error incurred due to the 

use of the anti-logarithm function during 

interpolation. The input number is split into three 

different ranges for the error analysis. 

 

Case 1: Inputs from 0 to 27-1 (i.e. mantissa with 7 

bits): Here the error is due to truncation alone as the 

error values for all 6-bit numbers have already been 

stored in the lookup table. For a table in which each 

word is 16 bits wide, the truncation error is given by 

2�17. 

 

Case 2: Inputs from 27 to 214-1 (i.e. mantissa with 

14 bits): The error has contributions from all the three 

error sources mentioned above. Interpolation is done 

by using Equation 8. In this case the first value of the 

interval is a = 0 and the last value is b = Smax. Also 

the first 6 bits of the mantissa rezeros since we are in 

the first of 26 intervals, and the value of n1 is given 

by the decimal value of the next 7 bits. This can be 

expressed as n1 = m _ 213. The interpolation error 

term is given by 

Interpolation term = a + (b � a) _ n1 27                  (8) 

Substituting b, a and n1 in 8 we get the 

interpolation term in the first interval as Interpolation 

term = Smax(m_ 213)=27:                                                 

(9) 

If the error due to anti-log is assumed to be zero, we 

can find that the error expression due to interpolation 

by using the following equation. 

Eint = log2(1 +m) �m � Smax _ (m _ 26):          (10) 

The maximum error is found by differentiating 

this equation, and setting it to zero. We get the 

maximum error as 

 Emaxint =4:33 _ 10�5 at m = 7:7929_ 10�3. 

The anti-log error depends on the values of 

log2(b � a) which is stored in the table and log2(n1) . 

We find the error due to antilog by simulating the 

lookup table based antilog approximation for these 

particular values and find the maximum anti-log error 

to be 8:4433_ 10�6. 

The results of the simulation are shown in Figure 

5 for all possible values of m ranging from 0 to 1. 
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Fig. 5. Anti-log Error during Interpolation 

 

 
Fig. 6. Interpolation Error for case 3 

 

Case 3: For numbers from 214 to 2k-1 (i.e. mantissa 

with higher than 14 bits precision): The truncation 

and antilog errors are the same as above. As for the 

interpolation error, we proceed in a fashion similar to 

Case 2. Here the value of n1 is given by n1 = 

round(m_213),where the round() function represents 

a round-off to the closest integer. The error function 

for this case is given by: 

Eint = log2(1 +m) �m�Smax _ round(m _ 213)27  

Plotting this expression from m = 0 to 2�6 in Figure 

6, we find the maximum error as 6:9276_10�5. Out 

of all the above cases the third case has the worst 

error due to interpolation, while the errors due to 

truncation and antilog approximation remain the 

same. Hence the error bound, given by plugging in 

the maximum values of each of the error components 

in 7 is  

Etot =8:5348 _ 10�5: 

 

III. ANTILOGARITHM COMPUTATION 
The Mitchell approximation to find the binary 

antilogarithm of a number is given by the expression: 

2m = 1 +m                                                          (12) 

 

The error due to this expression is given by 

EM = 2m � (1 +m)                                            (13) 

 

We sample the error curve at as many points as 

required, and store these values in the first entry of a 

lookup table. If c; d are any two adjacent values 

stored in the memory, we store log2(c � d) in the 

second entry of the lookup table. The architecture 

used for the implementation of the antilog function is 

very similar to the logarithm implementation except 

for these differences. In Figure 3, instead of the adder 

block we use a subtractor as the Mitchell 

approximation is always higher than the actual 

antilog value. Also the polarity of c�d changes from 

positive to negative when the mantissa m > 0:5288. 

Hence while using a table with 6 address bits (i.e. 64 

values), the comparison done in Figure 4 will be to 

check if the decimal value of the first six bits of the 

mantissa is greater than 34. The antilogarithm 

computation was simulated, and the worst case errors 

and the accurate number of bits are shown in Table 

III for different table sizes. 

 
TABLE III 

WORST CASE ANTILOG ERROR 

 

IV. EXPERIMENTAL RESULTS AND 

COMPARISONS 
In this section, we make comparisons with 

existing approaches that approximate the logarithm 

function. In comparison to the 6-region error 

correction algorithm described in [8], our approach is 

more flexible in that it supports better accuracies by 

increasing the LUT size and adding more bits to 

the adders/subtractors involved. The 6-region error 

correcting method has an absolute maximum error of 

0.0132 which givesan accuracy of 6 bits. We also 

analyze the LUT based approximation methods. 

Table IV compares the accuracy of methods given by 

Brubaker [11], Maenner [12],  and Kmetz [13] for a 

fixed table size of 2048 bits. We note that if these 

methods were to provide an accuracy comparable to 

ours, they need much bigger table sizes. The other 

methods shown in Table IV implement only the log 

function. Since our method implements both the log 

and the antilog function, we report only half the total 

lookup table size needed for our approach. In Table 

V, we compare the lookup table size required by our 

method and the symmetric bipartite table method [6]. 

The symmetric bipartite table method involves two 

parallel table lookups and an addition. From Table V, 

we note that our approach requires far less memory 

than the SBTM approach. Also when the required 

accuracy increases in bits, we see that the LUT size 

for the SBTM method needed to support this 
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accuracy increases at a much faster rate than for our 

method. For a 2 bit increase in the accuracy, the 

SBTM LUT size increases almost by a factor of a 

power of 3 whereas the LUT size of our method 

increases by a factor of a power of 2. The extra 

accuracy we obtain in our method is traded-off with 

the need to implement a modest number of additional 

components for interpolation. We quantified this 

overhead by implementing our method (as well as the 

SBTM method [6]) using the Xilinx ISE Foundation 

tool [15]. We used the XUPV2P board for this 

experiment. Table VI reports the outcome of this 

experiment, for outputs accurate upto 13 bits and 15 

bits. Although our method has a bigger logic 

overhead in terms of flip-flops, 4 - input LUTs and 

slices, these numbers are insignificant when 

compared to available logic resources on a 

conventional FPGA. For example in the XCV2P30 

FPGA with 30000 slices, both methods utilize less 

than 1% of the FPGA  resources. Also our method is 

far more conservative with respect to the memory 

resources utilized. Note that our method scales 

extremely well to obtain higher accuracies. To scale 

from 13 bits of accuracy to 15 bits we need a minimal 

increase in the logic resources and twice the memory 

resources as for 13 bits. The SBTM also needs a very 

small increase in the logic utilization, but needs close 

to three times more memory than for 13 bits. This 

trend in resource utilization holds as we scale to 

higher accuracies. The SBTM thus presents a 

bottleneck in its memory requirement for higher 

accuracies. Note that for 13 bits of accuracy we need 

two tables with 2048 bits each to generate the log and 

the antilog function. Also while computing the log 

function, half of the antilog look up table is required 

and vice versa during the antilog computation. The 

XUPV2P board used for the experiments supports 

dual port block RAM memory and so both log and 

antilog functions can be implemented 

simultaneously, without creating conflicts during 

memory access. 

 
 

TABLE IV 

COMPARISON OF ACCURACY 

 

 

 
 

TABLE V 

COMPARISON OF TABLE SIZES 

 

 
 

TABLE VI 

FPGA RESOURCE UTILIZATION 

 

V. CONCLUSION 
In this paper, The simulated results and the 

computed results always have at least 10 bits of 

accuracy which is the target of the implementation.In 

this project, presented approach is  to compute log ( ) 

and antilog ( ) in hardware. This approach is based on 

a LUT, followed by an interpolation step.We find log 

( ) and antilog ( ) of a number efficiently using 

interpolation, without the need to explicitly perform 

multiplication or division.Performed the 

multiplication which is required during the 

interpolation step, by utilizing an antilogarithm 

operation. The antilogarithm operation is also 

performed by utilizing a LUT. This approach results 

in significantly lower memory utilization for the 

same accuracy. This method scales extremely well to 

accommodate higher accuracies. 
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